Kernel estimators for the second order parameter in extreme value statistics

Yuri Goegebeur ∗
Jan Beirlant †
Tertius de Wet ‡

Abstract

We develop and study in the framework of Pareto-type distributions a general class of kernel estimators for the second order parameter ρ, a parameter related to the rate of convergence of a sequence of maximum values, linearly normalized, towards its limit. Inspired by the kernel goodness-of-fit statistics introduced in Goegebeur et al. (2008), for which the mean of the normal limiting distribution is a function of ρ, we construct estimators for ρ using ratios of ratios of differences of such goodness-of-fit statistics, involving different kernel functions as well as power transformations. The consistency of this class of ρ estimators is established under some mild regularity conditions on the kernel function, a second order condition on the tail function $1 - F$ of the underlying model, and for suitably chosen intermediate order statistics. Asymptotic normality is achieved under a further condition on the tail function, the so-called third order condition. Two specific examples of kernel statistics are studied in greater depth, and their asymptotic behavior illustrated numerically. The finite sample properties are examined by means of a simulation study.

∗Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark (email: yuri.goegebeur@stat.sdu.dk). This author’s research was supported by a grant from the Danish Natural Science Research Council.
†Department of Mathematics and Leuven Statistics Research Centre, K.U.Leuven, Celestijnenlaan 200B, 3001 Heverlee, Belgium (email: jan.beirlant@wis.kuleuven.be)
‡Department of Statistics and Actuarial Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa (email: tdewet@sun.ac.za). This author’s research was partially supported by National Research Foundation grant 2053332 and a research grant from the University of Stellenbosch