Forra gången införde vi notationsen \(e^{i \theta} \) för \(\cos \theta + i \sin \theta \).

Över på så vis har vi definierat \(e \) upphöjt till ett reellt imaginerat tal.

Vi har sett att \(e^{i \phi} \cdot e^{i \theta} = e^{i(\phi + \theta)} \) (Potenslaget gäller).

Vi definierar \(e^z \) då \(z = a + ib \) är komplex genom \(e^{a+ib} = e^a \cdot e^{ib} = e^a (\cos b + i \sin b) \).

Då har vi \(e^{z_1} \cdot e^{z_2} = e^{z_1+ib_1} \cdot e^{z_2+ib_2} = e^{z_1} \cdot e^{z_2} \cdot e^{i(b_1+b_2)} = e^{z_1+z_2} \).

\(\Rightarrow \) Potenslaget gäller! (En motivering varför \(e^z \) är ett bra skrivsätt).

Geometrisk tolkning till multiplikation:
\(\frac{z_1}{z_2} = r_1 e^{i \theta_1} r_2 e^{i \theta_2} \Rightarrow |z_1| |z_2| \cdot \arg(z_1) + \arg(z_2) \)

d.v.s. absolutbeloppet multipliceras & argumenten adderas!

\[\begin{array}{c}
\theta_1 \\
\theta_2 \\
\end{array} \]

På samma sätt får vi
\(\frac{z_1}{z_2} = \frac{r_1 e^{i \theta_1}}{r_2 e^{i \theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)} \)

d.v.s. absolutbeloppet divideras & argumenten subtraheras.

Ex. Bestäm argumentet till \(\frac{2i(1+i)}{-1-i\sqrt{3}i} \)

Lösning: \(\arg(2i) = \frac{\pi}{2} \), \(\arg(1+i) = \frac{\pi}{4} \), \(\arg(-1-i\sqrt{3}i) = -\frac{7\pi}{3} \)

\(\Rightarrow \arg\left(\frac{2i(1+i)}{-1-i\sqrt{3}i}\right) = \frac{\pi}{2} + \frac{\pi}{4} - \left(-\frac{7\pi}{3}\right) = \frac{17\pi}{12} \).
Ex. Ange koordinaterna för den punkt P i vilken punkten (4,3) hamnar efter rödning med vinkeln $\pi/3$ i positiv led kring origo.

Lösning: Identifiera planet med komplekta talplanet.
(4,3) blir det komplekta talet $4 + 3i$.

Rödning med vinkeln $\pi/3$ motsvaras av multiplikation med $e^{i\pi/3} = \cos\frac{\pi}{3} + i \sin\frac{\pi}{3} = \frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}$.

$\left(\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}\right)(4 + 3i) = 2 + \frac{3}{2}i + 2\sqrt{3}i - 3\sqrt{3} = 2 - \frac{3\sqrt{3}}{2} + i\left(\frac{3}{2} + 2\sqrt{3}\right)$

Punkten P får alla koordinaterna $(2 - \frac{3\sqrt{3}}{2}, \frac{3}{2} + 2\sqrt{3})$.

Sats de Moiuvres formel.
$$\left(e^{i\theta}\right)^n = e^{in\theta}$$

d.v.s. $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$.

Bevis: $n > 0$:

Upprepa användning av $e^{i\theta_1} \cdot e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$ ger:
$$\left(e^{i\theta}\right)^2 = e^{2i\theta}, \quad \left(e^{i\theta}\right)^3 = e^{3i\theta}, \quad \left(e^{i\theta}\right)^4 = e^{4i\theta}, \quad \text{etc.}$$

$\Rightarrow \left(e^{i\theta}\right)^n = e^{in\theta}$ för alla positiva n.

$(e^{i\theta})^0 = 1$ enligt definition.

$n > 0$:
$$\frac{1}{(e^{i\theta})^n} = \frac{1}{e^{in\theta}} = e^{-in\theta}.$$

Ex. Beräkna $(4 + \sqrt{3}i)^{20}$.

Skriv på poten form så blir det enklare.

$(-1 + \sqrt{3}i) = 2 \cdot \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2e^{\frac{2\pi}{3}i}$

$(-1 + \sqrt{3}i)^{20} = \left(2e^{\frac{2\pi}{3}i}\right)^{20} = 2^{20} \cdot e^{10\cdot\frac{2\pi}{3}} = 2^{20} \cdot e^{\frac{40\pi}{3}} = 2^{20} \cdot e^{\frac{36\pi}{3} + \frac{4\pi}{3}} = 2^{20} \cdot e^{12\pi} \cdot e^{\frac{4\pi}{3}}$

$= 2^{20} \cdot (-1 + \sqrt{3}i)^{20} = 2^{20} \cdot (-1 + \sqrt{3}i)^{20}$.
Ex. de Moivres formel kan användas för att hänleda
formler för \(\cos(n\theta) \) och \(\sin(n\theta) \) (valfritt \(n \)).

Ex. för \(n=2 \):

\[
\begin{align*}
(c\cos\theta + i\sin\theta)^2 &= \cos^2\theta - \sin^2\theta + 2i\cos\theta\sin\theta \\
(c\cos\theta + i\sin\theta)^2 &= \cos2\theta + i\sin\theta
\end{align*}
\]

Identifiers real- och imaginärt delar:

\[
\begin{align*}
\cos(2\theta) &= \cos^2\theta - \sin^2\theta \\
\sin(2\theta) &= 2\cos\theta\sin\theta.
\end{align*}
\]

Fler exempel i öm. uppg.

Eulers formler:

\[
\begin{align*}
\cos\theta &= \frac{e^{i\theta} + e^{-i\theta}}{2} \\
\sin\theta &= \frac{e^{i\theta} - e^{-i\theta}}{2i}
\end{align*}
\]

Bevis

\[
\begin{align*}
e^{i\theta} &= \cos\theta + i\sin\theta \\
e^{-i\theta} &= \cos\theta - i\sin\theta
\end{align*}
\]

\[
\begin{align*}
\Rightarrow \quad \{e^{i\theta} + e^{-i\theta} &= 2\cos\theta \\
e^{i\theta} - e^{-i\theta} &= 2i\sin\theta
\end{align*}
\]

Ex. Hänleda en formel för \(\cos^2\theta \).

\[
\cos^2\theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2 = \frac{1}{4}(e^{2i\theta} + e^{-2i\theta} + 2) = \frac{1}{2}\cos(2\theta) + \frac{1}{2}.
\]
Komplexa polynomialkvationer

"Allt" vet ju att komplexa tal infördes för att man ville lösa alla andra gradsekvationer, men detta är egentligen helt fel. Anledningen var istället att man ville lösa tredjegrads-

historik: (ej i boken!)
På 1500-talet betraktades en andragradsekvation

\[ax^2 + bx + c = 0 \]

som det geometriska problemet att hitta skärnings-

punkter mellan parabeln \(y = ax^2 \) med linjen \(y = -bx - c \). Därför var det ingen som var bekymrad

över att t.ex. ekvationen \(x^2 + 1 = 0 \) saknar

(reella) lösningar (komplexa tal var inte upptäckta

detta). Det illustrerar bara det faktum att parabeln \(y = x^2 \) och linjen \(y = -1 \) saknar skärningspunkter.

Cardano (1501-1576) gav en formel för att lösa en

tredjegradsekvation på formen \(x^3 = 3px + 2q \)

(vilket alltid har en reell lösning)

\[x = \sqrt[3]{q + \sqrt{q^2 - p^3}} - \sqrt[3]{q - \sqrt{q^2 - p^3}} \]

T.ex om \(p = 2 \) och \(q = 3 \) har vi ekvationen

\(x^3 = 6x + 6 \), och formeln ger lösningen

\(x = \sqrt[3]{4} + \sqrt[3]{2} \). Om istället \(p = 5 \) och \(q = 2 \) får vi

ekvationen \(x^3 = 15x + 4 \), men
\[q^2 - p^3 = -121 < 0 \text{ så Cardanos formel fungerar inte med aritmetik i } \mathbb{R}. \text{ Men ekvationen har en rot } x = y, \text{ (Kolla!)} \]

30 år senare studerade Bombelli Cardanos arbetet och föreslog att med komplex aritmetik får vi:

\[x = \sqrt[3]{2 + 11i} + \sqrt[3]{2 - 11i} \]

Det går att kolla att \((2+i)^3 = 2+11i\)
\((2-i)^3 = 2-11i\)

och därför får vi \(x = 2+i + 2-i = 4\).

Även för reella problem kan alltså komplex aritmetik vara relevant. Detta avser vara uppstådelsen av komplexa tal.

På köpet kan vi nu lösa alla andragradsekvationer.

\[\text{Ex. } z^2 = 3 - 4i. \text{ Kan inte bara dra roten} \]

\[\text{Ansätt } z = x + iy. \text{ Sätt in: } w... \text{ Vet inte vad } \sqrt{3-4i} \text{ betyder!} \]

\[(x+iy)^2 = 3-4i \quad \Rightarrow \quad x^2 - y^2 + i(2xy) = 3 - 4i \quad \Rightarrow \]

\[\begin{cases} x^2 - y^2 = 3 \\ 2xy = -4. \end{cases} \]

Absolutbeloppet i ursprungs ekvationen måste också vara lika för UL & TT

\[x^2 + y^2 = \sqrt{9+16} = 5. \]

\[\begin{cases} x^2 - y^2 = 3 \\ x^2 + y^2 = 5 \\ 2xy = -4 \end{cases} \quad \Rightarrow \quad \begin{cases} 2x^2 = 8 \\ 2y^2 = 2 \end{cases} \quad \Rightarrow \quad \begin{cases} x = \pm 2 \\ y = \mp 1 \end{cases} \]

\[\Rightarrow z_1 = 2 - i \text{ eller } z_2 = -2 + i. \]
Ex. Godtyckliga andragradsekvationer kan återföras till föregående exempel med hjälp av kvadratkomplettering.

\[z^2 - 6z + 2i + 5 - 2i = 0 \ (\Rightarrow) \]

\[(z - (3 + i))^2 - (3 - i)^2 + 5 - 2i = 0 \ (\Rightarrow) \]

\[(z - (3 - i))^2 - 9 + 1 + 6i + 5 - 2i = 0 \ (\Rightarrow) \]

\[(z - (3 - i))^2 - 3 + 4i = 0 \ (\Rightarrow) \]

\[(z - (3 - i))^2 = 3 - 4i. \]

Låt \(w = z - (3 - i) \). Lös ekvationen \(w^2 = 3 - 4i \). Vi har redan löst den i föreg. exempel. \(w = 2 - i \) eller \(w = 2 + i \)

Lös sedan \(z - (3 - i) = w \) för dessa \(w \), vilket ger \(z = 2i + 3 - i = 5 - 2i \) eller \(z = -2i + 3 - i = i \).

Ex. Reella ekvationer:

\[z^2 + 2z + 5 = 0 \ (\Rightarrow) \ (z + 1)^2 - 1 + 5 = 0 \ (\Rightarrow) \]

\[(z + 1)^2 = -4 \]

Sätt \(w = z + 1 \). Lös \(w^2 = -4 \).

\[w = x + iy \Rightarrow \begin{cases} x^2 - y^2 = -4 \\ x^2 + y^2 = 4 \ (\Rightarrow) \end{cases} \left\{ \begin{array}{l} 2x^2 = 0 \\ 2y = 8 \ (\Rightarrow) \end{array} \right\} \begin{cases} x = 0 \\ y = 4 \end{cases}. \]

\[w = \pm 2i \]

Vi får \(z = w - 1 = -1 \pm 2i \).

Anm. Om koefficienterna är reella går det bättre att använda pq-formeln:

\[z = -1 \pm \sqrt{1 - 5} = -1 \pm \sqrt{-4} = -1 \pm 2i \]

(och vi behöver inte ta ställning till om \(\sqrt{-4} \) betyder \(2i \) eller \(-2i \).)