Solutions

1. a) The series
\[\sum_{k=1}^{\infty} \frac{(-1)^k}{\ln k} \]
is **convergent**, since it satisfies the conditions of Leibniz’ criterion for convergence:
- The terms are of **alternate sign**.
- The terms tend to zero as \(k \) tends to \(\infty \).
- The absolute value of the terms is a **decreasing function** of \(k \) because the denominator \(\ln k \) is an increasing function of \(k \).

b) The series
\[\sum_{k=1}^{\infty} \frac{2^k k!}{k^k} \]
is **convergent**. With \(a_k = \frac{2^k k!}{k^k} \) we have
\[
\frac{a_{k+1}}{a_k} = \frac{2^{k+1} (k+1)!}{(k+1)^{k+1}} = \frac{2(1 + 1/k)^{-k}}{e} \to \frac{2}{e} \quad \text{as} \quad k \to \infty.
\]
The convergence now follows from the ratio test since the limit is less than 1.

c) The series
\[\sum_{k=1}^{\infty} \frac{(2 + 3i)^k}{(3 + 2i)^k} \]
is **divergent** since the absolute value of the term is
\[
\left| \frac{2 + 3i}{3 + 2i} \right| = 1
\]
so the terms do not tend to zero.

2. Let \(v(x,t) = u(x,t) - x \). Then \(v \) solves the problem
\[
\begin{cases}
\partial_t v(x,t) = 3 \partial_{xx}^2 v(x,t), & 0 < x < \pi, \quad t > 0, \\
\partial_x v(0,t) = \partial_x v(\pi,t) = 0, & t > 0, \\
v(x,0) = \cos 4x \cos 2x, & 0 < x < \pi.
\end{cases}
\]
By Euler’s formulas,
\[
\cos 4x \cos 2x = \left(\frac{e^{4ix} + e^{-4ix}}{2} \right) \left(\frac{e^{2ix} + e^{-2ix}}{2} \right) = \frac{\cos 2x}{2} + \frac{\cos 6x}{2}.
\]

Please, turn over!
Hence the solution is

\[v(x, t) = \frac{1}{2}(e^{-12t} \cos 2x + e^{-108t} \cos 6x). \]

and

\[u(x, t) = x + \frac{1}{2}(e^{-12t} \cos 2x + e^{-108t} \cos 6x). \]

3. a) By using Euler’s formula for \(\sin x \), we find that

\[
\begin{align*}
 c_n &= \frac{1}{4\pi i} \int_{-\pi}^{\pi} e^{x(1+i-in)} - e^{x(1-i-in)} \, dx \\
 &= \frac{1}{4\pi i} \left[\frac{e^{x(1+i-in)}}{1+i(1-n)} - \frac{e^{x(1-i-in)}}{1-i(1+n)} \right]_{-\pi}^{\pi}
\end{align*}
\]

Inserting \(\pi \) and \(-\pi \), and using that \(e^{ik \pi} = (-1)^k \) for any integer \(k \) and \(\sinh x = (e^x - e^{-x})/2 \) gives

\[
 c_n = \frac{(-1)^{n+1}}{2\pi i} \frac{\sinh \pi}{1+i(1-n)} - \frac{1}{1-i(1+n)} = \frac{(-1)^{n+1} \sinh \pi}{\pi} \frac{1}{n^2 + 2in - 2}
\]

Thus the Fourier series of \(u \) is

\[
u(x) = \frac{\sinh \pi}{\pi} \sum_{k=-\infty}^{\infty} \frac{(-1)^{n+1} e^{inx}}{n^2 + 2in - 2}
\]

The function \(u \) is equal to the sum of its Fourier series, since it is continuous and piecewise \(C^1 \).

b) The sum of the series for \(x = 3\pi/2 \) is \(u(3\pi/2) \). Since \(u \) has period \(2\pi \),

\[
u(3\pi/2) = u(-\pi/2) = e^{-\pi/2} \sin(-\pi/2) = -e^{-\pi/2}.
\]

c) First note that

\[
\frac{1}{n^2 + 2in - 2} = \frac{n^2 - 2in - 2}{(n^2 - 2)^2 + 4n^2} = \frac{n^2 - 2}{n^4 + 4} + i \frac{-2n}{n^4 + 4}
\]

The terms of the series in question are thus the real parts of the Fourier coefficients. For \(x = \pi \), we have

\[
u(\pi) = 0 = -\frac{\sinh \pi}{\pi} \sum_{k=-\infty}^{\infty} \frac{n^2 - 2}{n^4 + 4} + i \frac{-2n}{n^4 + 4}
\]

The sum of the real parts is zero, so

\[
0 = -\frac{1}{2} + 2 \sum_{k=1}^{\infty} \frac{n^2 - 2}{n^4 + 4}
\]

It follows that

\[
\sum_{n=1}^{\infty} \frac{n^2 - 2}{n^4 + 4} = \frac{1}{4}
\]
4. Assume that \(u \) is given by a power series with a positive radius of convergence, \(u(x) = \sum_{k=0}^{\infty} a_k x^k \). We can differentiate term by term if \(x \) is within the radius of convergence:

\[
\begin{align*}
 u'(x) &= \sum_{k=1}^{\infty} k a_k x^{k-1}, \\
 u''(x) &= \sum_{k=2}^{\infty} k(k-1) a_k x^{k-2}
\end{align*}
\]

After insertion in the differential equation we get

\[
\sum_{k=2}^{\infty} k(k-1) a_k x^{k-2} - \sum_{k=1}^{\infty} k a_k x^k + \sum_{k=0}^{\infty} a_k x^k = 0.
\]

We replace \(k - 2 \) by \(k \) in the first series:

\[
\sum_{k=0}^{\infty} (k + 2)(k + 1) a_{k+2} x^k + \sum_{k=1}^{\infty} k a_k x^k + \sum_{k=0}^{\infty} a_k x^k = 0.
\]

If the equality is valid for all \(x \) in a neighborhood of 0 then the coefficient for every power of \(x \) is zero. It follows that

\[
(k + 2) a_{k+2} + a_k = 0, \quad k \geq 0.
\]

The initial values imply that \(a_0 = 1 \) and \(a_1 = 0 \). Hence all coefficients with odd indices are zero and

\[
a_{2k} = \frac{(-1)^k}{2^k k!}.
\]

The solution is

\[
u(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{2^k k!} = e^{-x^2/2}.
\]

5. a) For \(x \geq 0 \) we have

\[
0 \leq \frac{x}{2 + k^3 x} \leq \frac{1}{k^3}
\]

so the series is uniformly convergent for \(x \geq 0 \) by Weierstrass’ M-test since \(\sum k^{-3} \) is convergent. It follows that \(f \) is continuous for \(x \geq 0 \).

b) The derivative of term number \(k \) is

\[
g_k(x) = \frac{2}{(2 + k^3 x)^2}
\]

Let \(a > 0 \). The supremum of \(g_k(x) \) for \(x \geq a \) is less than or equal to \(\frac{2}{(2 + ak^3)^2} \) and the series

\[
\sum_{k=1}^{\infty} \frac{2}{(2 + ak^3)^2}
\]

is convergent since \(a \neq 0 \). By Weierstrass’ M-test, the differentiated series is uniformly convergent for \(x \geq a \). Therefore, the function \(f \) is differentiable for \(x \geq a \). Since this is true for any \(a > 0 \), it follows that \(f \) is differentiable for \(x > 0 \).

c) We have \(f(0) = 0 \). If \(f \) has a right derivative at 0, it is equal to

\[
\lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} \sum_{k=1}^{\infty} \frac{1}{(2 + k^3 x)^2}
\]

Let \(N \) be any positive integer. Since the terms of the series are positive, the limit is greater than the limit of the first \(N \) terms, which is equal to \(N/4 \). Since this is true for any \(N \), the limit is \(\infty \) and the derivative does not exist.