1. Consider the function \(f(x, y) = xy(3 - x - y) \). Find the largest value of \(f(x, y) \) over the first quadrant \(x, y \geq 0 \).

2. Evaluate the generalized integral
\[
\iiint_D \frac{x^2 z}{x^2 + y^2 + z^2} e^{-x^2 - y^2 - z^2} \, dx \, dy \, dz,
\]
where \(D : z \geq \sqrt{3(x^2 + y^2)} \).

3. Consider the system of equations
\[
\begin{align*}
x^2 + y^2 - z^2 &= 2 \\
x + y - 2e^z &= 0.
\end{align*}
\]
Verify that \((x, y, z) = (1, 1, 0)\) is a solution. Show that the system can be solved for \(y \) and \(z \) as smooth functions of \(x \) near the point \((1, 1, 0)\) and compute \(y'(1) \) and \(z'(1) \).

4. Find the general \((C^2\)-smooth) solution \(u(x, y) \) to the problem
\[
\cos^2(x)u''_{xy} + u''_{yy} = 0.
\]
It is helpful to introduce the new variables \(s = \tan x, t = y - \tan x \). Also find a particular solution such that \(u(x, 0) = \tan^2 x \) and \(u'_x(x, 0) = 0 \).

5. Find an equation of the curve in the \(xy \)-plane which passes through \((1, 1)\) and which intersects all level curves of the function \(f(x, y) = x^2 e^y \) orthogonally.

6. Let \(u(x, y) \) be a \(C^\infty \)-smooth function. Given \(\epsilon > 0 \) let \(D_\epsilon : x^2 + y^2 < \epsilon^2 \) be the \(\epsilon \)-neighbourhood of the origin. Denote the average value of \(u \) over \(D_\epsilon \) by
\[
A(\epsilon, u) = \frac{1}{\pi \epsilon^2} \iint_{D_\epsilon} u \, dA.
\]
 a) Define the second-order Taylor polynomial \(P_2(x, y) \) of \(u \) about \((0, 0)\). What does Taylor’s formula say about the size of the difference \(u(x, y) - P_2(x, y) \) as \((x, y) \to (0, 0)\)?
 b) Assume that \(\Delta u(0, 0) > 0 \) where \(\Delta u = u''_{xx} + u''_{yy} \) is the Laplacian. Prove that the inequality \(A(\epsilon, u) > u(0, 0) \) holds for all sufficiently small \(\epsilon > 0 \).

Comment. A function which satisfies \(\Delta u > 0 \) at a point is said to be subharmonic there.