1. Determine the maximum and the minimum of the function \(f(x, y) = x + 8y \) when \(x^4 + y^4 = 17 \).

2. Compute the line-integral
\[
\int_{\gamma} (e^x \cos x - y) \, dx + (2xy + \arctan(y^2)) \, dy
\]
where \(\gamma \) is the positively oriented boundary of the domain \(D : 0 \leq x \leq 1, x^2 \leq y \leq x \).

3. Determine the flux of the vector-field \(u = (xz^2, x^2y - z^3, e^{x^2+y^2} + y^2z) \) outwards through the hemisphere \(x^2 + y^2 + z^2 = a^2, z \geq 0 \), where \(a > 0 \) is a constant. (By "outwards" we mean the normal direction with positive \(z \)-component).

4. Define \(g_n(x) = n^\alpha xe^{-nx} \) where \(\alpha \) is a constant and \(n \) is a positive integer. Determine the limit \(g(x) = \lim_{n \to \infty} g_n(x) \) when \(x \geq 0 \). Determine the values of \(\alpha \) for which the convergence \(g_n \to g \) is uniform on \([0, \infty)\).

5. Find a \(C^1 \)-function \(f(x) \) such that the field
\[
u = (f(x)z \cos y, -f(x)z \sin y, f(x) \cos y)
\]
is conservative and maps \((0, 0, 0)\) to \((0, 0, 1)\). Determine a potential function for the field \(\nu \) corresponding to your choice of \(f \).

6. Let \(u(x, y) \) be a \(C^2 \)-smooth function, which satisfies \(\Delta u \geq 0 \) everywhere on \(\mathbb{R}^2 \), where \(\Delta u = u_{xx} + u_{yy} \) is the Laplacian. (Such functions are called subharmonic). For \(r > 0 \) we let \(\gamma_r : x^2 + y^2 = r^2 \) be the circle about \((0, 0)\) of radius \(r \). Let \(I(r) \) be the average value of \(u \) over \(\gamma_r \), i.e.,
\[
I(r) = \frac{1}{2\pi r} \int_{\gamma_r} u(x, y) \, ds, \quad r > 0.
\]

a) Prove that \(I(r) \to u(0, 0) \) as \(r \to 0 \).

b) Prove that \(I(r) \) is an increasing function of \(r \).