Problem 1. The solution of the recurrence problem is:
\[a_n = (1 - i)(1 + i)^n + (1 + i)(1 - i)^n + n, \quad n = 0, 1, 2, \ldots \]
□

Problem 2. The solutions of the congruences are:
\[x = 59 + 154n, \quad n \in \mathbb{Z}. \]
□

Problem 3. We know that there is a one-to-one correspondence between equivalence relations on a set \(X \) and partitions of the same set \(X \). The number of partitions of the set \(\{1, 2, 3, 4\} \) is
\[\sum_{k=1}^{4} S(4, k) = 1 + 7 + 6 + 1 = 15, \]
where \(S(n, k) \) denotes Stirling numbers of the second kind.
□

Problem 4. We shall use the so-called principle of inclusion and exclusion. Denote by \(X \) the set of all integers \(n \) such that \(1 \leq n \leq 123 \). Denote by \(X_2 \) the subset of \(X \) consisting of the even integers in \(X \), denote by \(X_3 \) the subset of integers in \(X \) divisible by 3, and denote by \(X_7 \) the set of integers in \(X \) that are divisible by 7. Phrased in these terms we want to calculate the number of integers in the set \(X \setminus (X_2 \cup X_3 \cup X_7) \).

By the above mentioned principle we have that
\[
|X \setminus (X_2 \cup X_3 \cup X_7)| = |X| - (|X_2| + |X_3| + |X_7|) \\
+ (|X_2 \cap X_3| + |X_2 \cap X_7| + |X_3 \cap X_7|) - |X_2 \cap X_3 \cap X_7|,
\]
where the symbol \(|\cdot| \) is used to indicate the number of elements in a set. A calculation gives that \(|X_2| = 61, |X_3| = 41 \) and \(|X_7| = 17 \). Next observe that the set \(X_2 \cap X_3 \) consists of all integers in \(X \) divisible by 6. Arguing this way we see that \(|X_2 \cap X_3| = 20, |X_2 \cap X_7| = 8, |X_3 \cap X_7| = 5, \) and \(|X_2 \cap X_3 \cap X_7| = 2 \). We now have that the number of integers \(1 \leq n \leq 123 \) not divisible by 2, 3 or 7 equals
\[|X \setminus (X_2 \cup X_3 \cup X_7)| = 123 - (61 + 41 + 17) + (20 + 8 + 5) - 2 = 35. \]
□

Problem 5. Notice first the prime factorization \(20000 = 2^5 5^4 \), and that every positive integer \(n_j \) must have a prime factorization of the form \(n_j = 2^{k_j} 5^{l_j} \) for some nonnegative integers \(k_j \) and \(l_j \) (\(j = 1, 2, 3 \)). By the fundamental theorem of arithmetic we have that the triple \((n_1, n_2, n_3) \) is such that \(n_1 n_2 n_3 = 20000 \) if and only if the triple \((k_1, k_2, k_3) \) satisfies
\[
\begin{align*}
\begin{cases}
 k_1 + k_2 + k_3 = 5, \\
 k_1 \geq 0, \quad k_2 \geq 0, \quad k_3 \geq 0,
\end{cases}
\end{align*}
\]
(1)
and the triple \((l_1, l_2, l_3)\) satisfies
\[
\begin{align*}
& l_1 + l_2 + l_3 = 4, \\
& l_1 \geq 0, \ l_2 \geq 0, \ l_3 \geq 0.
\end{align*}
\]
By standard theory (Section I.1.4 in Grimaldi) problem (1) has \(\binom{5+3-1}{5} = \binom{7}{5}\) solutions \((k_1, k_2, k_3)\) and problem (2) has \(\binom{6}{4}\) solutions \((l_1, l_2, l_3)\). As a result our problem has \(\binom{7}{5}\binom{6}{4} = 315\) solutions \((n_1, n_2, n_3)\).

\[\square\]

Problem 6. Passing from the recurrence formula for the Fibonacci numbers to the exponential generating function we see that \(F\) solves the second order constant coefficient differential equation initial value problem
\[
\begin{cases}
F'' = F' + F, \\
F(0) = 1, \quad F'(0) = 1,
\end{cases}
\]
where the prime \('\) indicates derivative. A calculation gives that
\[
F(x) = \frac{1 + \sqrt{5}}{2\sqrt{5}} \exp\left(\frac{1 + \sqrt{5}}{2} x\right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \exp\left(\frac{1 - \sqrt{5}}{2} x\right),
\]
where \(\exp(x) = e^x\) is the usual exponential function.

\[\square\]