Problem 1. The solution of the recursion problem is:
\[a_n = -2^n + (-3)^n + n2^n, \quad n = 0, 1, 2, \ldots \]

Problem 2. Encoding function \(E \), code words and weight function \(w \) for our code \(C \) are given by the following table:

<table>
<thead>
<tr>
<th>x</th>
<th>y = E(x)</th>
<th>w(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>00000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>00101</td>
<td>2</td>
</tr>
<tr>
<td>010</td>
<td>01111</td>
<td>4</td>
</tr>
<tr>
<td>011</td>
<td>01010</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>11010</td>
<td>3</td>
</tr>
<tr>
<td>101</td>
<td>11111</td>
<td>5</td>
</tr>
<tr>
<td>110</td>
<td>10101</td>
<td>3</td>
</tr>
<tr>
<td>111</td>
<td>10000</td>
<td>1</td>
</tr>
</tbody>
</table>

The separation of a linear code equals the minimum weight of its nonzero code words. Our code \(C \) has separation 1. The received word 10101 is a code word in \(C \). Indeed, we have that \(E(110) = 10101 \). The received word 00111 is not a code word in \(C \).

Problem 3. We shall use the so-called principle of inclusion and exclusion. Denote by \(X \) the set of all integers \(n \) such that \(1 \leq n \leq 143 \). Denote by \(X_2 \) the subset of \(X \) consisting of the even integers in \(X \), denote by \(X_3 \) the subset of integers in \(X \) divisible by 3, and denote by \(X_7 \) the set of integers in \(X \) that are divisible by 7. Phrased in these terms we want to calculate the number of integers in the set \(X \setminus (X_2 \cup X_3 \cup X_7) \).

By the above mentioned principle we have that
\[
|X \setminus (X_2 \cup X_3 \cup X_7)| = |X| - (|X_2| + |X_3| + |X_7|) + (|X_2 \cap X_3| + |X_2 \cap X_7| + |X_3 \cap X_7|) - |X_2 \cap X_3 \cap X_7|,
\]
where the symbol \(|\cdot| \) is used to indicate the number of elements in a set. A calculation gives that \(|X_2| = 71 \), \(|X_3| = 47 \) and \(|X_7| = 20 \). Next observe that the set \(X_2 \cap X_3 \) consists of all integers in \(X \) divisible by 6. Arguing this way we see that \(|X_2 \cap X_3| = 23 \), \(|X_2 \cap X_7| = 10 \), \(|X_3 \cap X_7| = 6 \), and \(|X_2 \cap X_3 \cap X_7| = 3 \). We now have that the number of integers \(1 \leq n \leq 143 \) not divisible by 2, 3 or 7 equals
\[
|X \setminus (X_2 \cup X_3 \cup X_7)| = 143 - (71 + 47 + 20) + (23 + 10 + 6) - 3 = 41.
\]
Problem 4. Recall that equivalence relations correspond to partitions. There is exactly one partition of the set \(S = \{1, 2, 3, 4\} \) having a block with 4 or more elements. The number of equivalence relations on \(S \) such that every equivalence class has at most 3 elements is
\[
\sum_{k=1}^{4} S(4, k) - 1 = 1 + 7 + 6 + 1 - 1 = 14,
\]
where \(S(n, k) \) are Stirling numbers of the second kind. \(\Box \)

Problem 5. The solutions of the congruences are the polynomials \(f(x) \) in \(\mathbb{Z}_3[x] \) of the form
\[
f(x) = 2x^3 + 2x + 1 + (x^2 + 1)(x^3 + 2x + 2)g(x), \quad g(x) \in \mathbb{Z}_3[x].
\]

\(\Box \)

Problem 6. We first notice that the generating function
\[
f(x) = \sum_{n=0}^{\infty} c_n x^n
\]
for the sequence \(\{c_n\}_{n=0}^{\infty} \) is given by
\[
f(x) = \frac{1}{1 - x} \frac{1}{1 - x^2} = \frac{1}{(1 - x)^2(1 - x^2)} = \frac{1}{(1 - x)^3(1 + x)}.
\]
A calculation gives the partial fraction decomposition that
\[
f(x) = \frac{1}{2} \frac{1}{(1 - x)^3} + \frac{1}{4} \frac{1}{(1 - x)^2} + \frac{1}{8} \frac{1}{1 - x} + \frac{1}{8} \frac{1}{1 + x}.
\]
Using the standard power series expansion
\[
\frac{1}{(1 - x)^k} = \sum_{n=0}^{\infty} \binom{n + k - 1}{n} x^n
\]
we have the expansion
\[
f(x) = \sum_{n=0}^{\infty} \left(\frac{1}{2} \binom{n + 2}{n} + \frac{1}{4} \binom{n + 1}{n} + \frac{1}{8} + \frac{1}{8}(-1)^n \right) x^n
\]
so that
\[
c_n = \frac{1}{2} \binom{n + 2}{n} + \frac{1}{4} \binom{n + 1}{n} + \frac{1}{8} + \frac{1}{8}(-1)^n
\]
for \(n \geq 0 \). A straightforward calculation now gives that
\[
c_n = \frac{1}{4} n^2 + n + \frac{7}{8} + \frac{1}{8}(-1)^n
\]
for \(n \geq 0 \). \(\Box \)