1. a) $-\frac{1}{\sqrt{2}}$
 b) $x = -5, x = 0$
 c) $\lg 3$
 d) $v = 30^\circ, v = 330^\circ$
 e) $(x + 1)(x - 2)$
 f) $x = -\frac{1}{2}$
 g) 60°
 h) $x = 0$
 i) $1 < x < 2$
 j) $x = 0$

2. a) Med hjälp av förflyttnings- och omskalningsregler får vi att $y = 2f(x)$ motsvarar en omskalning faktorn 2 i y-led, $y = f(x+1) - 1$ en förflyttning 1 steg åt vänster och 1 steg nedåt, $y = f(2x)$ en omskalning faktorn $\frac{1}{2}$ i x-led och $y = f(-x)$ en spegling i y-axeln:
Studerar vi grafen för \(f \) ser vi att varje \(y \)-värde i värdevärdetim svarar mot precis ett \(x \)-värde. Således har \(f \) en invers, och grafen för inversen får vi genom att spegla \(y = f(x) \) i linjen \(y = x \). Nu gäller det att \(D_{f^{-1}} = V_f = [-1,1] \) och \(V_{f^{-1}} = D_f = [0,2] \).

c) Se läroboken sidan 133.

3. a)

\[
\ln x - \frac{2}{\ln x} = 1 \quad \Leftrightarrow \quad t = \ln x \quad \Leftrightarrow \quad t^2 - t - 2 = 0 \quad \Leftrightarrow \quad t = 2 \text{ eller } t = -1
\]

\[
t = \ln x \quad \Leftrightarrow \quad \ln x = 2 \text{ eller } \ln x = -1 \quad \Leftrightarrow \quad x = e^2 \text{ eller } x = e^{-1}.
\]

b) Detta är en geometrisk summa som beräknas genom

\[
\sum_{k=2}^{20} \frac{1}{5^k} = \sum_{k=2}^{20} \left(\frac{1}{5}\right)^k = \left(\frac{1}{5}\right)^2 \sum_{k=0}^{18} \left(\frac{1}{5}\right)^k = \frac{1}{25} \cdot \frac{1 - \left(\frac{1}{5}\right)^{19}}{1 - \frac{1}{5}} = \frac{1}{20} \left(1 - \left(\frac{1}{5}\right)^{19}\right).
\]

c) Vi använder hjälpvinkelmetoden och får

\[
\sin 3x + \sqrt{3} \cos 3x = \sqrt{2} \quad \Leftrightarrow \quad 2 \left(\frac{1}{2} \sin 3x + \frac{\sqrt{3}}{2} \cos 3x\right) = \sqrt{2}
\]

\[
\Leftrightarrow \quad \sin \left(3x + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}} \quad \Leftrightarrow \quad 3x + \frac{\pi}{3} = \frac{\pi}{4} + 2\pi k \text{ eller } 3x + \frac{\pi}{3} = \frac{3\pi}{4} + 2\pi k
\]

\[
\Leftrightarrow \quad x = -\frac{\pi}{36} + \frac{2\pi}{3} k \text{ eller } x = \frac{5\pi}{36} + \frac{2\pi}{3} k,
\]

där \(k \in \mathbb{Z} \).

4. a) Vi skriver först om \(f(x) \) genom att dela upp i fall:

\[
f(x) = \begin{cases}
(x - 1) + 2(x + 2) - 8 = 3x - 5 & \text{då } x \geq 1, \\
-(x - 1) + 2(x + 2) - 8 = x - 3 & \text{då } -2 \leq x < 1, \\
-(x - 1) - 2(x + 2) - 8 = -3x - 11 & \text{då } x < -2.
\end{cases}
\]
Grafen \(y = f(x) \) (heldragen) får då utseendet i figur- en. Ekvationen \(f(x) = 0 \) löses sedan i varje aktuellt delintervall, och vi får

\[
x \geq 1 : \quad 3x - 5 = 0 \quad \Leftrightarrow \quad x = \frac{5}{3} \quad \text{(ok)}
\]

\(-2 \leq x < 1 : \quad x - 3 = 0 \quad \Leftrightarrow \quad x = 3 \quad \text{(utanför)}
\]

\(x < -2 : \quad -3x - 11 = 0 \quad \Leftrightarrow \quad x = -\frac{11}{3} \quad \text{(ok)}.
\]

Vi har således rötterna \(x = -11/3 \) och \(x = 5/3 \), något som också kan avläsas i grafen utifrån skärningen med \(x \)-axeln.

b) Kvadrerar av båda led ger \(0 = 0 \), vilket inte ger oss så mycket information (eftersom vi även kan ha falska rötter). Bättre är då omskrivningen

\[
\sqrt{x^2 - 2x + 1} = 1 - x \quad \Leftrightarrow \quad \sqrt{(x - 1)^2} = 1 - x \quad \Leftrightarrow \quad |x - 1| = 1 - x,
\]

där den sista ekvationen löses av alla \(x \leq 1 \) (definitionen av absolutbelopp).

5. a) Kvadratkomplettering ger

\[
4x^2 - 8x - y^2 - 12 = 0 \quad \Leftrightarrow \quad 4(x - 1)^2 - y^2 = 16
\]

\[
\Leftrightarrow \quad \frac{(x - 1)^2}{2^2} - \frac{y^2}{4^2} = 1,
\]

och vi kan avläsa att det rör sig om en hyperbel med medelpunkt \((1,0)\). Skärningarna med koordinataxlar- na, \((-1,0)\) och \((3,0)\), får vi genom att sätta \(y = 0 \) (sätter vi \(x = 0 \) får vi ingen skärning). Avslutningsvis tar vi fram asymptoterna:

\[
\frac{(x - 1)^2}{2^2} - \frac{y^2}{4^2} = 0 \quad \Leftrightarrow \quad y^2 = 2^2 \cdot (x - 1)^2
\]

\[
\Leftrightarrow \quad y = \pm 2(x - 1),
\]

vilket ger oss \(y = 2x - 2 \) respektive \(y = -2x + 2 \).

b) Eftersom \(\arcsin \) endast är definierad i \([-1,1]\), måste det gälla att

\[-1 \leq x^2 - x - 1 \leq 1, \]

dvs. att \(x^2 - x \geq 0 \) och \(x^2 - x - 2 \leq 0 \). Löser vi dessa båda olikheter (t.ex. med teckentabell) får vi

\[
x^2 - x \geq 0 \quad \text{och} \quad x^2 - x - 2 \leq 0
\]

\[
\Leftrightarrow \quad x(x - 1) \geq 0 \quad \text{och} \quad (x + 1)(x - 2) \leq 0
\]

\[
\Leftrightarrow \quad (x \geq 1 \quad \text{eller} \quad x \leq 0) \quad \text{och} \quad -1 \leq x \leq 2,
\]
vilket tillsammans ger oss mängden $D_1 = [-1, 0] \cup [1, 2]$ (rita figur!).

Slutligen måste vi undanta de punkter som ger 0 i nämnaren: vi inser att $\arcsin(x^2 - x - 1) = 0$ är ekvivalent med att $x^2 - x - 1 = 0$, vilket ger oss punkterna $x = \frac{1 \pm \sqrt{5}}{2}$, som båda ligger i D_1. Största möjliga definitionsmängd är således $D = D_1 \setminus \{\frac{1 + \sqrt{5}}{2}\}$, vilken illustreras i figuren nedan.

 b) Vi inför beteckningarna i figuren nedan. Använd vi cosinussatsen får vi då

 $$6^2 = 4^2 + 5^2 - 2 \cdot 4 \cdot 5 \cdot \cos \alpha,$$
 $$4^2 = 5^2 + 6^2 - 2 \cdot 5 \cdot 6 \cdot \cos \beta,$$

 vilka implicerar att $\cos \alpha = 1/8$ och $\cos \beta = 3/4$.

 Vi visar först att $\cos 2\beta = \cos \alpha$:

 $$\cos 2\beta = 2 \cos^2 \beta - 1 = 2 \left(\frac{3}{4}\right)^2 - 1 = 2 \cdot \frac{9}{16} - 1 = \frac{1}{8} = \cos \alpha.$$

 Därefter noterar vi att $0 \leq \alpha, \beta \leq \pi/2$ (eftersom $\cos \alpha$ och $\cos \beta$ är positiva), vilket speciellt betyder att $0 \leq \alpha, 2\beta \leq \pi$. Med denna sista observation följer det att $\cos 2\beta = \cos \alpha \Rightarrow 2\beta = \alpha$, och vi är klara.