1. Let
\[u(x) = \begin{cases}
1, & 0 < x < 1 \\
0, & 1 \leq x < \pi.
\end{cases} \]

a) Find the cosine series of \(u \).
b) Find the sum of the series
\[\sum_{k=1}^{\infty} \frac{\sin(2k)}{k}. \]

2. Find a solution \(u \) of the following problem
\[
\begin{align*}
\partial_t u(x, t) &= \partial_x^2 u(x, t) & \text{when } t > 0 \text{ and } 0 < x < \pi, \\
\partial_x u(0, t) &= \partial_x u(\pi, t) = 0 & \text{when } t > 0, \\
u(x, 0) &= \sin^2 x & \text{when } 0 < x < \pi.
\end{align*}
\]

3. Find a function \(u \) such that
\[
\int_{-\infty}^{\infty} \frac{u(x-y)}{1+y^2} dy = \frac{1}{4+x^2}.
\]

4. Let \(f(x) = xe^{-x} \) for \(x > 0 \) and \(f(x) = 0 \) for \(x \leq 0 \).
a) Find the Fourier transform of \(f \).
b) For each \(\lambda > 0 \), find the value of the integral
\[
\int_{-\infty}^{\infty} \frac{\sin \lambda x}{x(1+ix)^2} dx.
\]

5. Let \(u(x) = x \) when \(0 \leq x \leq \pi \).
a) Determine the numbers \(\lambda_n \) so that, for each positive integer \(N \), the integral
\[
\int_{0}^{\pi} |u(x) - \sum_{n=1}^{N} \lambda_n \sin(2nx)|^2 dx
\]
is as small as possible.
b) For these values of \(\lambda_n \), find the limit of the integral in a) as \(N \to \infty \).

\textbf{Hint}: One might want to consider the cosine series of the function \(v(x) = x^2 \), \(0 \leq x \leq \pi \).