1. Show that \(\frac{d}{dx}(x^2 \sin x^{-3}), x > 0 \), is not in \(L^1(0, 1) \).

2. Let \(\mu \) and \(\nu \) be positive measures on a measurable space \((X, \mathcal{M}) \).
 (a) Suppose \(\nu \) is absolutely continuous with respect to \(\mu \) with density function \(f \in L^p(\mu) \) for some \(p > 1 \). Show that there exists a constant \(C \) so that \(\nu(E) \leq C(\mu(E))^{(p-1)/p} \) for any \(E \in \mathcal{M} \).
 (b) Show that if the inequality \(\nu(E) \leq C\mu(E) \) holds for a fixed constant \(C \) and all \(E \in \mathcal{M} \), then \(\nu \) is absolutely continuous with respect to \(\mu \) with Radon-Nikodym derivative \(f \) satisfying \(0 \leq f \leq C \) a.e. \((\mu) \).

3. Determine \(\lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{dx}{n(e^{x^2} - 1) + 1/n} \).

 Hint: Note that \(e^t \geq 1 + t \).

4. Suppose \(f \) is measurable on the interval \((0, 1)\) and assume that
 \[
 \int_0^1 x^{-2} |f(x)| \, dx < \infty.
 \]
 Let \(\{a_k\}_{k=1}^\infty \) be a real sequence with \(0 < a_k \leq 1 \) and \(\sum_{k=1}^\infty a_k < \infty \). Show that the series \(\sum_{k=1}^\infty f(a_k x) \) converges a.e. in \((0, 1)\).

5. Suppose \(g \geq 0 \) is bounded and Lebesgue measurable in \(\mathbb{R}^n \), that \(g \equiv 0 \) outside \(B(0, 1), \) and that \(\int_{\mathbb{R}^n} g = 1 \). Put \(g_\varepsilon(x) = \varepsilon^{-n} g(x/\varepsilon), \varepsilon > 0 \). Show that if \(f \) is integrable on every compact set in \(\mathbb{R}^n \), then
 \[
 \int_{\mathbb{R}^n} g_\varepsilon(y)f(x-y) \, dy \to f(x) \quad \text{as} \quad \varepsilon \to 0
 \]
 for almost all \(x \in \mathbb{R}^n \).