1. Let μ be the counting measure on \mathbb{N}, that is, $\mu(E)$ equals the number of elements of E if E is finite and $\mu(E) = \infty$ otherwise. Suppose that (f_n) is a sequence of real-valued (obviously μ-measurable) functions on \mathbb{N} that converges in measure to f. Show that (f_n) converges uniformly to f.

2. a) Let X be an infinite set and let μ be a finite outer measure on the subsets of X such that every set $\{x\}$, $x \in X$ is μ-measurable and there exists a countable subset A_μ of X with $\mu(X - A) = 0$. Show that μ is a measure on the σ-algebra of all subsets of X.

b) Let μ, ν be finite outer measures on X with the property in a), that is, there exist countable sets $A_\mu, A_\nu \subset X$ with $\mu(X - A_\mu) = \nu(X - A_\nu) = 0$. Find the Lebesgue decomposition of ν with respect to μ.

3. Let (X, \mathcal{A}, μ) be a finite measure space and let $1 < p < \infty$. Suppose that (f_n) is a bounded sequence in $L^p(X, \mu)$ (that is, $\sup_n \|f_n\|_p < \infty$), such that (f_n) converges in measure to f.

a) Prove that $f \in L^p(x, \mu)$.

b) Show that $\lim_{n \to \infty} \|f_n - f\|_1 = 0$.

4. a) Find an unbounded Lebesgue measurable function f on $[0,1]$ with

$$\int_{[0,1]} |f(x)|^p dx < \infty$$

for all $p > 1$.

5. Show that the function $f : \mathbb{R} \mapsto \mathbb{R}$ given by

$$f(x) = \sum_{n=1}^{\infty} \frac{\sin(x\sqrt{n})}{n^2}$$
is differentiable on \mathbb{R} and compute its derivative.

6. Let $f, g : \mathbb{R}^n \mapsto \mathbb{R}$ be integrable functions with respect to the Lebesgue measure m_n on \mathbb{R}^n. Show that for m_n-almost every $y \in \mathbb{R}^n$ the function $x \mapsto f(x + y)g(x)$ is integrable. Prove also that

$$y \mapsto \int_{\mathbb{R}^n} f(x + y)g(x)dm_n(x)$$

is m_n-integrable.