Answers and Comments

1. a) No, since the dual system (***) on page 135 has a solution \(y = (2, 1, 3)^T \).

 b) See the proof to Lemma 1, p. 43.

2. a) Vector \(a \) is the Newton direction (it minimizes the quadratic form in one step.)
 Vector \(b \) is none (it is a tangent vector). Vector \(c \) is none (it could be the Steepest descent direction, but it has the wrong sign).

 b) Vectors \(a \) and \(b \), since \(a = -x_0 \), \(c \parallel \nabla f(x_0) = 2Hx_0 \) and \(b^T c = 0 \Rightarrow b^T H a = 0 \).

3. a) Pick \((s_1, x_1, x_2) \) as a BFS, \(\min = 1 \) at \(x_{opt} = (0, 1, 1) \).

 b) The dual problem has the solution \(y_{opt} = (0, 1, 0) \), \(\max = 1 \).

4. a) Not convex (e.g. draw the set profile for \(y = 0 \)).

 b) Convex, since \(f = x^2 + y^2 - z \) and \(g = x^2 + y^2 + z \) are both convex \(\Rightarrow h = \max\{f, g\} \)
 \(\Rightarrow \{h \leq 1\} \) is a convex set.

 c) Only for \(\alpha = 0 \) (e.g. study the Hessian by (modified) Sylvester criterion for \(\alpha \neq 0, 1 \) and study cases \(\alpha = 0 \) and \(\alpha = 1 \) separately).

5. The set is compact \(\Rightarrow \min \) exists. No CQ points. KKT points: \((0, 0, 0) \) with \(f = 0 \),
\(\pm(1, -1, 0) \) with \(f = -2 \) and \(\pm(1, 1, -4) \) with \(f = -14 \). The last two are the minimum points.

6. a) The Lagrange function \(L \) is a quadratic function with the indefinite Hessian \(\Rightarrow \Theta(u, v) = -\infty \) for all \(u \geq 0 \) and \(v \). Maximization gives again \(-\infty \). The obvious duality gap makes it impossible to use the dual problem in order to solve the primal one.

 b) To minimize \(f \) is the same as to minimize \(g = f^2 \). The stationary point equation \(\nabla g = 0 \) is equivalent to the normal equation \(\Rightarrow \) the solution to the normal equation is the stationary point + \(g \) is convex \(\Rightarrow \) it is the global minimum.

\(^1\)For re-exams only answers are provided.