1. Let the set of $n \times n$ real matrices be normed by $\| (a_{jk}) \|^2 = \sum_{j,k=1}^n a_{jk}^2$ and consider the subspaces X of orthogonal matrices and Y of matrices with determinant 1. Show that X and Y are complete and that X is compact but not Y.

2. Let \mathbb{R} and \mathbb{R}^2 be provided with their usual topologies and consider their subspaces $X = (0, 1)$ respectively $Y = (0, 1) \times (0, 1)$. Show that X is not homeomorphic to Y.

 Hint: Compare connectivity properties of X and Y!

3. Suppose X and Y are metric spaces and $f : X \to Y$ is bijective and continuous, and f^{-1} is uniformly continuous. Show that if X is complete, then so is Y.

4. Let X be the algebra of continuous, complex-valued functions of n variables x_1, \ldots, x_n which are periodic with period 2π in each variable and provided with the maximum norm. Show that the subalgebra generated by the functions $1, e^{\pm ix_1}, \ldots, e^{\pm ix_n}$ is dense in X.

5. Suppose (X, d) is a complete, connected metric space with the property that every continuous function $f : X \to \mathbb{R}$ is uniformly continuous. Show that X is compact.

 Hint: Show that if X is not compact, then there exists an $\varepsilon > 0$ such that there is an infinite sequence of pairwise disjoint balls of radius ε in X. Then construct a continuous function which is not uniformly continuous using Urysohn’s lemma.

GOOD LUCK!