Andra ordningen linjära differentialekvationer

\((*)\) \[y'' + a(x)y' + b(x)y = h(x) \]

Som ni ser förekommer \(y, y'\) och \(y''\) i VL (men funktionerna \(a, b\) och \(h\) som beror av \(x\) behöver inte vara linjära)

Lösningarna
Linjära differentialekvationer har en speciell linjär struktur, och detta ska vi utnyttja när vi löser dem.

Def. Om högerledet \(h(x) = 0\) säger vi att den linjära differentialekvationen är homogen. Om den inte är homogen, så säger vi att den är inhomogen.

Sats. Antag att \(y_p\) är en lösning till \((*)\) (med \(h(x) \neq 0\)). \((y_p\) kallas för partiell\) lösning

Då ges den allmänna lösningen till \((*)\) av \(y = y_h + y_p\), där \(y_h\) är den allmänna lösningen till motsvarande homogena elevation \(y'' + a(x)y' + b(x)y = 0\).

Satsen säger att så att för att hitta alla lösningar till \((*)\) (med \(h(x) \neq 0\)) så räcker det att hitta en lösning till \((*)\) och alla lösningar till den homogena (låtta) elevationen.
Bevis. Vi visar först att alla formen \(y = y_h + y_p \)
där \(y_h \) löser den homogena
\& \(y_p \) den inhomogena
elutionen löser den inhomogena elutionen.
Sedan ska vi visa att vi kan få alla lösningar
 till den inhomogena elutionen på det sättet.

Sätt in \(y = y_h + y_p \) i VL i den inhomogena ekv,
\[
(y_h + y_p)'' + a(x)(y_h + y_p)' + b(x)(y_h + y_p) = 0
\]
\[
= y_h'' + a(x)y_h' + b(x)y_h + (y_p'' + a(x)y_p' + b(x)y_p) = h(x)
\]
\[
= h(x) \quad \text{(löser homogena)}
\]
\[
= h(x) \quad \text{(löser inhomogena)}
\]

Nu ska vi visa att om \(y \) löser \((*)\), så kan
\(y \) skrivs på formen \(y = y_h + y_p \) för någon lösning
\(y_h \) till homogena \&\(y_p \) en valfri \(y_p \), som
löser den inhomogena \((*)\).

Låt \(y \) och \(y_p \) vara lösningar till \((*)\):
Vi behöver visa att \(y - y_p \) löser homogena elutionen.

Kontroll:
\[
(y-y_p)'' + a(x)(y-y_p)' + b(x)(y-y_p) =
\]
\[
= y'' + a(x)y' + b(x)y - (y_p'' + a(x)y_p' + b(x)y_p) =
\]
\[
= h(x) - h(x) \quad \text{= h(x)}
\]
\[
= h(x) \quad = 0
\]

V.S.B.
Resten av föreläsningen idag kommer vi att ägna oss åt att lösa den homogena ekvationen, och endast då a och b är konstater.

På torsdag ska vi lära oss hur man kan hitta en partiell lösning till den inhomogena ekvationen. Med satserna ovan, kan vi sedan lösa alla andra ordningar (homogena eller inhomogena) linjära DE med konstata koefficienter.

Linjära homogena ekvationer med konstata koefficienter

\[y'' + ay' + by = 0 \]

\[a, b \in \mathbb{R} \text{ (eller } \mathbb{C}) \]

V. Vill hitta en allmän lösning (d.v.s. alla lösningar)

Sök först en lösning på formen

\[
\begin{cases}
 y = e^{rx} \quad \text{för något } r. \text{ Derivera } k-mal \text{ sätt in i ekv.}
 \\
 y' = re^{rx}
 \\
 y'' = r^2e^{rx}
\end{cases}
\]

\[r^2e^{rx} + ar^2e^{rx} + be^{rx} = 0 \quad \iff \quad e^{rx}(r^2 + ar + b) = 0. \]

Lösningarna kan endast hittas på detta sätt om

\[r^2 + ar + b = 0, \quad \text{d.v.s. om } \]

\[r = -\frac{a}{2} \pm \sqrt{\frac{a^2}{4} - b} \]

Karakteristiska ekvationer. Oftast 2 olika \(r \) (±) homogena, om det inte funkar, om det inte

En egenskap hos linjära ekvationer:

Om \(y \) är en lösning så är även \(Cy \) en lösning där \(C \) är en konstant. Om \(y_1 \) och \(y_2 \) är lösningar så är även \(y_1 + y_2 \) en lösning.
P.g.a. detta får vi att om y_1 och y_2 är två lösningar, så är även $C_1y_1 + C_2y_2$ en lösning.

Vi kan använda det på y_1, y_2 som vi hittade:

$$y = C_1e^{r_1x} + C_2e^{r_2x}$$

är en lösning då

$$r_{1,2} = -\frac{a}{2} \pm \sqrt{\frac{a^2}{4} - b}.$$

Vi försvantav oss att den allmänna lösningen till en andra ordningen differensialligning ska innehålla två godtyckliga konstanter (motvarande integrationssätt) eftersom vi borde behöva integra två gånger för att få bort andra derivata. Vi ska se att denna intuition stämmer.

Sats Antag att den karakteristiska ekvationen $r^2 + ar + b = 0$ till $y'' + ay' + by = 0$ (*) har rötterna r_1 och r_2. Då ges den allmänna lösningen till (*) av

$$y(x) = \begin{cases} C_1e^{r_1x} + C_2e^{r_2x} & \text{om } r_1 \neq r_2 \\ (C_1x + C_2)e^{r_1x} & \text{om } r_1 = r_2. \end{cases}$$

Bevis Se boken, men lås några exempel först.

Anm. $y = C_1e^{r_1x} + C_2e^{r_2x}$ är en lösning som innehåller två godtyckliga konstanter endast om $r_1 \neq r_2$. Om $r_1 = r_2 = r$ har vi

$$C_1e^{r_1x} + C_2e^{r_2x} = (C_1 + C_2)e^{rx}$$

Kan slås ihop till en konstant.
Vid dubbelrot behöver vi alltså hitta en lösning förutom $y_1 = e^{rx}$. Vi provar med $y_2 = xe^{rx} \Rightarrow y_2' = e^{rx} + rxe^{rx} = (1 + r_x)e^{rx}$.

$y_2'' = r^2e^{rx} + (1 + r_x)rxe^{rx} = (2r_1 + r_1^2x)e^{rx}$.

Sätt in i ekvationen och använd att kar. elv. i dubbelrotfallet är $(r-r_1)^2 = r^2 - 2r_1r + r_1^2$, d.v.s $a = -2r_1$ och $b = r_1^2$.

Differens av $y'' - 2r_1y' + r_1^2y = 0$. Sätt in i denne:

$(2r_1 + r_1^2x)e^{rx} - 2r_1(1 + r_1x)e^{rx} + r_1^2xe^{rx} = 0$. Och det är en lösning!

Vi har alltså de två lösningarna e^{rx} och xe^{rx} i dubbelrotfallet, och kan bilda flera lösningar $C_1e^{rx} + C_2xe^{rx}$, vilket är de allmänna lösningarna (enkla satsen!)

Notera att den beror på två fria konstater.

Ex. Lös differensiationen $y'' + y' - 2y = 0$

Kar. elv. $r^2 + r - 2 = 0 \Rightarrow r = -\frac{1}{2} \pm \sqrt{\frac{9}{4} + 2}$

Den allmänna lösningen är $y(x) = C_1e^{1/2x} + C_2e^{-3/2x}$. Kontrollera gänna!

Ex. Lös differensiationen $y'' - 6y' + 9y = 0$

Kar. elv. $r^2 - 6r + 9 = 0 \Rightarrow r = 3 \pm \sqrt{9 - 9} = 3$ (dubbelrot)

Den allmänna lösningen är $y(x) = C_1e^{3x} + C_2xe^{3x}$. Kontrollera!
Ex. Lägg ekvationen \(y'' + 2y' + 2y = 0 \).

Kan ekvationen \(r^2 + 2r + 2 = 0 \)
\[r = -1 \pm \sqrt{1 - 2} = -1 \pm i \]

Allmän lösning:
\[y(x) = C_1 e^{(-1+i)x} + C_2 e^{(-1-i)x} \quad (C_1, C_2 \in \mathbb{C}) \]

Komplex lösning: Vi är endast intresserade av reella lösningar (förmodligen!) Det går att skriva om den,
\[y = C_1 e^{-x} (\cos x + i \sin x) + C_2 e^{-x} (\cos x - i \sin x) \]
\[= e^{-x} (C_1 (\cos x + i \sin x) + C_2 (\cos x - i \sin x)) \]
\[= e^{-x} \left(\frac{(C_1 + C_2) \cos x + i (C_1 - C_2) \sin x}{A} \right) \]
\[= e^{-x} \left(A \cos x + B \sin x \right) \quad \text{allmän (reell) lösning!} \]

vilket är en reell lösning om \(A \) och \(B \) är reella.

Vi ska se att vi direkt kan skriva ner den reella allmänna lösningen när vi har ickereella rötter till den karakteristiska ekvationen.

Sats. Antag att den karakteristiska ekvationen \(r^2 + ar + b = 0 \) till \(y'' + ay' + by = 0 \) har rötterna \(r_{1,2} = \alpha \pm i \beta \), \(\alpha, \beta \in \mathbb{R} \) och \(\beta \neq 0 \). Då ges den allmänna lösningen av
\[y(x) = e^{\alpha x} \cdot (A \cos \beta x + B \sin \beta x) \]
där \(A \) och \(B \) är godtyckliga konstant.

Beviside: Följ stegen i exemplet ovan.
Tillämpning: Harmonisk svängning

En tyngd är fäst i en utdragen eller hoptryckt fjäder. Den utsätts för en motnätad fjäderkraft F som är proportionell mot den utdragna sträckan y.

Alltså gäller $F = -ky$ där k är fjäderkonstanten.

Inga andra krafter autas påverka (tyngdkraften går att bortse från genom att låta y vara avvikelsen från jämnhållsläget. Se nedan)

Ex. En tyngd med massa 1 kg, fäst i en fjäder med fjäderkonstant 9 N/m dras ut 1 m från jämnhållsläget och släpps därefter. Hur varierar tyngdens läge med tiden?

Lösning: Låt $y(t)$ vara tyngdens läge (i meter) vid tiden t (sekunder). Fjäderkraften är då $F(t) = -9y(t)$.

Newton andra lag ger $F(t) = ma(t) = m\ddot{y}(t) = 1 \cdot y''(t)$.

Vi får $y''(t) = -9y(t) \implies y'' + 9y = 0$.

Begynnelsesvillkor: $y(0) = 1$ och $y'(0) = 0$

Dras ut 1 m släpps från stillastående

Lös först diffkvationen. Kar. ekv. $r^2 + 9 = 0 \implies r = \pm 3i$.

Allmän lösning av diffkvation: $y(t) = A\cos(3t)+B\sin(3t)$

Begynnelsesvillkor ger \(\sum A = 1 \implies y(t) = \cos(3t)\).
Ex. Dämpad svängning.

Vi får \[my'' = -cy' - ky \]

\[y'' + \frac{c}{m} y' + \frac{k}{m} y = 0. \]

Om exempelvis \(m=1 \) och \(k=9 \), som i exemplet, så får vi olika beteenden beroende på om \(C \) är stor eller liten.

- **C litet:** t.ex. \(C=4 \) (\(C^2 \) ska vara < 4mk)

 Kar. ekv. \(r^2 + 4r + 9 = 0 \) \(\Rightarrow \) \(r = -2 \pm \sqrt{4-9} = -2 \pm 1.15 \)

 Lösning: \(y(t) = e^{-2t} (A \cos 1.15t + B \sin 1.15t) \)

 (dämpad svängning)

- **C stor:** (t.ex \(C=10 \))

 (\(C^2 \) ska vara > 4mk)

 Kar. ekv. \(r^2 + 10r + 9 = 0 \) \(\Rightarrow \) \(r = -5 \pm \sqrt{25-9} = -5 \pm 4 \)

 Lösning \(y(t) = C_1 e^{-t} + C_2 e^{-9t} \) \(= \begin{cases} \text{dämpad svängning} \end{cases} \)
Varför kan man bortse från tyngdkraften?

Systems med tyngdkraften medreklud
\[
\begin{align*}
\sum F &= -ky - mg \\
F &= my''
\end{align*}
\]

ger
\[
y = \text{jämviktspunkten för fjädern utan tyngd}
\]

\[my'' + ky = -mg \] (*)

Vid jämvikt är \(y' = y'' = 0 \) och vi får
\[ky = -mg, \text{ d.v.s. } y = -\frac{mg}{k} \]

Detta är jämviktspunkten då tyngden sitter på fjädern.

Om vi vill låta denna punkt vara origo, kan vi införa den nya variabeln
\[\tilde{y} = y + \frac{mg}{k} \quad y = -\frac{mg}{k} \quad \text{(jämviktståget)}
\]

\[\Rightarrow y = \tilde{y} - \frac{mg}{k} \quad \text{motiverar } \tilde{y} = 0\]

Sätt in i (*):
\[
\begin{align*}
m \left(\tilde{y} - \frac{mg}{k} \right)'' + k \left(\tilde{y} - \frac{mg}{k} \right) &= -mg \\
m \tilde{y}'' + k \tilde{y} &= -mg \\
m \tilde{y}'' + k \tilde{y} &= 0
\end{align*}
\]

Vår tidigare ekvation!