Ordinary Differential Equations II

February 20

2018

Sturm-Liouville problems

Last time: the problem

\[-y''(x) = \lambda y(x), \quad y(0) = y(1) = 0,\]

has a nontrivial solution \(y(x) = c \sin(n\pi x), \ c \neq 0, \) iff \(\lambda = \lambda_n := n^2 \pi^2, \ n = 1, 2, 3, \ldots \) Any \(y \in C^2([0, 1], \mathbb{C}) \) with \(y(0) = y(1) = 0 \) can be written

\[
y(x) = \sum_{n=1}^{\infty} c_n \sin(n\pi x),
\]

for some \(c_n \in \mathbb{C}, \) where the (Fourier) series is uniformly convergent on \([0, 1]\).

The numbers \(\lambda_n \) can be seen as eigenvalues and the functions \(y_n(x) = \sin(n\pi x) \) as eigenvectors, or eigenfunctions, for the linear operator \(A := -\frac{d^2}{dx^2}. \)

Recall that a linear map \(A \) on an \(n \)-dim. inner product space \(V \) is symmetric (or Hermitian) if \(\langle Au, v \rangle = \langle u, Av \rangle \ \forall u, v \in V. \) If \(A \) is symmetric, then \(\exists \) ON basis of eigenvectors \(\{u_j\}_{j=1}^{n} \) (spectral theorem). Every vector \(u \in V \) can be written

\[
u = \sum_{j=1}^{n} c_j u_j
\]

where

\[
\langle u_j, u_k \rangle = \begin{cases} 1, & j = k, \\ 0, & j \neq k \end{cases} \quad \text{and} \quad c_j = \langle u_j, u \rangle.
\]

\(A = -\frac{d^2}{dx^2} \) is formally a symmetric operator with respect to the inner product

\[
\langle f, g \rangle = \int_{0}^{1} f^*(x)g(x) \, dx = \int_{0}^{1} \overline{f(x)}g(x) \, dx,
\]

\((** = \text{complex conjugation}), \) since

\[
\langle Af, g \rangle = \int_{0}^{1} -f''(x)g(x) \, dx = -[f'(x)g(x)]_0^1 + \int_{0}^{1} \overline{f'(x)}g'(x) \, dx = \left[f(x)g'(x) \right]_0^1 - \int_{0}^{1} \overline{f(x)}g''(x) \, dx = \int_{0}^{1} f(x)(-g''(x)) \, dx = \langle f, Ag \rangle,
\]
provided that f and g vanish at the endpoints. Moreover, the eigenfunctions are orthogonal since

$$\int_0^1 \sin(n\pi x) \sin(m\pi x) \, dx = \int_0^1 \frac{1}{2} (\cos((n-m)\pi x) - \cos((n+m)\pi x)) \, dx$$

$$= \frac{\sin((n-m)\pi)}{2(n-m)\pi} - \frac{\sin((n+m)\pi)}{2(n+m)\pi}$$

$$= 0$$

if $n \neq m$. The norm of $\sin(n\pi x)$ is $1/\sqrt{2}$. Setting $u_n(x) = \sqrt{2} \sin(n\pi x)$, $n = 1, 2, \ldots$ we thus get an ‘ON basis’ of eigenfunctions.

Goal: generalize this to eigenvalue problems of the form

$$-(p(x) y'(x))' + q(x) y(x) = \lambda r(x) y(x), \quad a \leq x \leq b,$$

with boundary conditions $b_{11} y(a) + b_{12} y'(a) = b_{21} y(b) + b_{22} y'(b) = 0$. This is called a Sturm-Liouville problem. Can be written $Ay = \lambda y$ with

$$A = \frac{1}{r(x)} \left(-\frac{d}{dx} p(x) \frac{d}{dx} + q(x) \right).$$

Example. Consider a string with varying density. The equation for small vibrations is then given by the variable wave eq.

$$\frac{\partial^2 u}{\partial t^2}(t, x) = c^2(x) \frac{\partial^2 u}{\partial x^2}(t, x).$$

Separation of variables leads to the eigenvalue problem

$$-y'' = \lambda e^{-2}(x) y,$$

so that $p(x) \equiv 1$, $q(x) \equiv 0$ and $r(x) = e^{-2}(x)$.

We first need to discuss some general properties of inner product spaces.

Inner product spaces

H complex vector space. A map $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$ is called an inner product if

1. $\langle f, f \rangle > 0$, $f \neq 0$ (positive definiteness),

2. $\langle f, g \rangle = \overline{\langle g, f \rangle}$ (Hermitian symmetry),

3. $\langle f, \alpha_1 g_1 + \alpha_2 g_2 \rangle = \alpha_1 \langle f, g_1 \rangle + \alpha_2 \langle f, g_2 \rangle$ (linearity in 2nd argument).

Remarks:

1. $\langle 0, 0 \rangle = 0$.

2.
(2) and (3) \[\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle = \overline{\alpha_1} \langle f_1, g \rangle + \overline{\alpha_2} \langle f_2, g \rangle. \]

An inner product is linear in the 2nd argument and conjugate linear in the 1st. This is called sesquilinearity (generalization of bilinearity). Usual convention in physics; in mathematics usually the opposite.

We define the norm corresponding to \(\langle \cdot, \cdot \rangle \) by
\[
\| \cdot \| = \sqrt{\langle \cdot, \cdot \rangle}.
\]

Examples.
- \(\mathbb{C}^n \) with \(\langle a, b \rangle = \sum_{j=1}^{n} \overline{a_j} b_j \) and \(\| a \| = \sqrt{\sum_{j=1}^{n} |a_j|^2} \).
- \(l^2 = \{ u = \{ u_j \}_{j=1}^{\infty} : \sum_{j=1}^{\infty} |u_j|^2 < \infty \} \) with \(\langle u, v \rangle = \sum_{j=1}^{\infty} \overline{u_j} v_j \) and \(\| u \| = \sqrt{\sum_{j=1}^{\infty} |u_j|^2} \).
- \(C([a, b], \mathbb{C}) \) with \(\langle f, g \rangle = \int_{a}^{b} \overline{f(x)} g(x) \, dx \) and \(\| f \| = \sqrt{\int_{a}^{b} |f(x)|^2 \, dx} \).

If \(H \) is complete with the norm coming from the inner product (a Banach space), it’s called a Hilbert space. We won’t require this.

We write \(f \perp g \) if \(\langle f, g \rangle = 0 \). Recall that
\[
\| f + g \|^2 = \| f \|^2 + \| g \|^2, \quad f \perp g.
\]

We also have the Cauchy-Schwarz inequality (Thm 5.2)
\[
|\langle f, g \rangle| \leq \| f \| \| g \|.
\]

This yields the triangle inequality for \(\| \cdot \| \), showing that it’s indeed a norm:
\[
\| f + g \|^2 = \langle f + g, f + g \rangle = \langle f, f \rangle + \langle f, g \rangle + \langle g, f \rangle + \langle g, g \rangle
\]
\[
\leq \| f \|^2 + 2\| f \| \| g \| + \| g \|^2 = (\| f \| + \| g \|)^2.
\]

A set of vectors \(\{ u_j \} \) is called an orthonormal set if
\[
\langle u_j, u_k \rangle = \begin{cases}
1, & j = k, \\
0, & j \neq k.
\end{cases}
\]

We can define the orthogonal projection on an ON set using the following lemma.

Lemma. Suppose \(\{ u_j \}_{j=0}^{n} \) is an ON set and let \(V \) be the span of \(\{ u_j \}_{j=0}^{n} \). Every \(f \in H \) can be written
\[
f = f_\parallel + f_\perp = \sum_{j=0}^{n} \langle u_j, f \rangle u_j,
\]
with \(f_\parallel \perp f_\perp \). Moreover, \(\langle u_j, f_\perp \rangle = 0 \) for all \(j \) and
\[
(2) \quad \| f \|^2 = \sum_{j=0}^{n} |\langle u_j, f \rangle|^2 + \| f_\perp \|^2.
\]

3
Every \hat{f} in V satisfies
\[\|f - \hat{f}\| \geq \|f_\perp\| \]
with equality iff $\hat{f} = f_\parallel$. That is, f_\parallel is the unique vector in V closest to f.

Proof.
\[
\langle u_j, f_\perp \rangle = \langle u_j, f - f_\parallel \rangle = \langle u_j, f \rangle - \langle u_j, f_\parallel \rangle = \langle u_j, f \rangle - \left(u_j, \sum_{k=0}^{n} \langle u_k, f \rangle u_k \right) \\
= \langle u_j, f \rangle - \sum_{k=0}^{n} \langle u_k, f \rangle \langle u_j, u_k \rangle = \langle u_j, f \rangle - \langle u_j, f \rangle = 0.
\]
In particular, $\langle f_\parallel, f_\perp \rangle = 0$ since f_\parallel is in V. Thus,
\[\|f\|^2 = \|f_\parallel\|^2 + \|f_\perp\|^2 \]
with
\[\|f_\parallel\|^2 = \left(\sum_{j=0}^{n} \langle u_j, f \rangle u_j, \sum_{k=0}^{n} \langle u_k, f \rangle u_k \right) = \sum_{j=0}^{n} \sum_{k=0}^{n} \langle u_j, f \rangle \langle u_k, f \rangle \langle u_j, u_k \rangle = \sum_{j=0}^{n} |\langle u_j, f \rangle|^2. \]
Fix a vector $\hat{f} = \sum_{j=0}^{n} \alpha_j u_j$ in V. Then
\[\|f - \hat{f}\|^2 = \|f_\parallel + f_\perp - \hat{f}\|^2 = \|f_\perp\|^2 + \|f_\parallel - \hat{f}\|^2, \]
so that
\[\|f - \hat{f}\| \geq \|f_\perp\| \]
with equality iff $\hat{f} = f_\parallel$. \qed

(2) \Rightarrow Bessel’s inequality:
\[\sum_{j=0}^{n} |\langle u_j, f \rangle|^2 \leq \|f\|^2 \]
with equality iff f is in the span of $\{u_j\}_{j=0}^{n}$.

We assume that H is infinite-dimensional. An orthonormal set $\{u_j\}_{j=0}^{\infty}$, is called an orthonormal basis if
\[\|f\|^2 = \sum_{j=0}^{\infty} |\langle u_j, f \rangle|^2 \ \forall f \in H. \]
Set
\[f_n = \sum_{j=0}^{n} \langle u_j, f \rangle u_j. \]
If $\{u_j\}$ is an ON set then (2) \Rightarrow
\[\|f - f_n\|^2 = \|f\|^2 - \sum_{j=0}^{n} |\langle u_j, f \rangle|^2. \]
Hence, \(f_n \to f \) in \(H \), i.e.
\[
f = \sum_{j=0}^{\infty} \langle u_j, f \rangle u_j
\]
iff \(\{u_j\} \) is an ON basis.

A linear operator on \(H \) is simply a linear map \(A : H \to H \). It’s useful to extend this definition so that \(A \) only is defined on some subspace \(D(A) \) of \(H \) (with values in \(H \)). The space \(D(A) \) is called the domain of \(A \).

A is called symmetric if
\[
\langle Af, g \rangle = \langle f, Ag \rangle, \quad \forall f, g \in D(A)
\]
(the book also requires that \(D(A) \) is dense in \(H \)).

Example. The operator \(A = -\frac{d^2}{dx^2} \) can be be considered as a linear operator on \(H = C([a, b], \mathbb{C}) \) with \(D(A) = \{ f \in C^2([a, b], \mathbb{C}) : f(a) = f(b) = 0 \} \). Our previous calculation shows that \(A \) is symmetric.

\(\lambda \in \mathbb{C} \) is called an **eigenvalue** if \(\exists \) nonzero eigenvector \(u \in D(A) \), s.t. \(Au = \lambda u \).

Theorem. Let \(A \) be symmetric. Then all eigenvalues are real and eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. Suppose that \(u \) is an eigenvector corresponding to \(\lambda \). Then
\[
\lambda \langle u, u \rangle = \langle u, Au \rangle = \langle Au, u \rangle = \overline{\lambda} \langle u, u \rangle
\]
\(\Rightarrow \lambda = \overline{\lambda} \) since \(\langle u, u \rangle = \|u\|^2 \neq 0 \). That is, \(\lambda \) is real.

If \(Au_j = \lambda_j u_j, \ j = 1, 2, \lambda_1 \neq \lambda_2 \), then
\[
\lambda_2 \langle u_1, u_2 \rangle = \langle u_1, Au_2 \rangle = \langle Au_1, u_2 \rangle = \lambda_1 \langle u_1, u_2 \rangle
\]
since \(\lambda_1 \in \mathbb{R} \). Since \(\lambda_1 \neq \lambda_2 \) we obtain \(\langle u_1, u_2 \rangle = 0 \).

A linear operator \(A \) with \(D(A) = H \) is called **bounded** if
\[
\|A\| := \sup_{\|f\|=1} \|Af\| < \infty.
\]
This is called the operator norm of \(A \). Defines a norm on the vector space of bounded operators (exercise). If \(f \neq 0 \), then \(\|f\|^{-1} f \) is a unit vector, so
\[
\|A(\|f\|^{-1} f)\| \leq \|A\| \Rightarrow \|Af\| \leq \|A\|\|f\|.
\]
The last inequality holds trivially if \(f = 0 \). This gives
\[
\|Af - Ag\| = \|A(f - g)\| \leq \|A\|\|f - g\|,
\]
so \(A \) is (Lipschitz) continuous.

An operator \(A \) with \(D(A) = H \) is called compact if every sequence \(\{Af_n\} \) has a convergent subsequence whenever \(\{f_n\} \) is a bounded sequence. Every compact operator is bounded (exercise).

Next time: spectral thm for compact symmetric operators.