Grunddel

1. Vi har att det\((A - \lambda E) = -(\lambda - 1)^3\). Alltså har \(A\) endast egenvärdet 1.

Egenvektorerna till egenvärdet 1 utgörs av alla nollskilda vektorer som är ortogonala mot vektorn \((1, 0, 1)\). Alltså finns det två lineärt oberoende egenvektorer, men det finns inte tre lineärt oberoende egenvektorer. Det följer att \(A\) inte är diagonaliserbar.

2. Projektionen av linjens riktning \(u = (1, 0, 1)\) på planets normal \(n = \frac{\sqrt{3}}{3}(1, 1, 1)\) ges av \((u|n)n = \frac{2}{3}(1, 1, 1)\). Alltså ges projektionen av \(u\) på planet \(x + y + z = 0\) av \(u - \frac{2}{3}(1, 1, 1) = \frac{1}{3}(1, -2, 1)\). Som riktningvektor till den på \(\pi\) projicerade linjen kan vi därför använda vektorn \((1, -2, 1)\).

Punkten \((1, 1, -1)\) ligger på planet \(\pi\) och linjen \(L\). Därför ges den projicerade linjen av \((x, y, z) = (1, 1, -1) + t(1, -2, 1), t \in \mathbb{R}\).

3. Om \(X\) är ortogonal, så är \(XX^t = E\) där \(E\) är enhetsmatrisen. Ekvationen blir då \(AX = E + A\), vilken har lösningen \(X = A^{-1} + E\) eftersom \(A\) är inverterbar.

Beräkning ger nu att \(A^{-1} + E = \frac{1}{5} \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}\), vilket är en ortogonal matris. Alltså är \(X = \frac{1}{5} \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}\) den enda ortogonala matris som uppfyller kraven i uppgiften.

4. Obekanta är \(v\) och \(g\). Vi söker lösning till ekvationen
\[
\begin{bmatrix}
1 & -1 \\
2 & -4 \\
3 & -9
\end{bmatrix}
\begin{bmatrix}
v \\
g
\end{bmatrix}
= \begin{bmatrix}
14 \\
21 \\
15
\end{bmatrix}.
\]

Denna ekvation saknar lösning. Vi söker minsta kvadratlösningen och löser därför normalekvationen \(A^tA = A^tY\) där \(A = \begin{bmatrix} 1 & -1 \\ 2 & -4 \\ 3 & -9 \end{bmatrix}, X = \begin{bmatrix} v \\ g \end{bmatrix}\) och \(Y = \begin{bmatrix} 14 \\ 21 \\ 15 \end{bmatrix}\).

Vi får
\[
\begin{bmatrix}
14 & -36 \\
-36 & 98
\end{bmatrix}
\begin{bmatrix}
v \\
g
\end{bmatrix}
= \begin{bmatrix}
101 \\
-233
\end{bmatrix}.
\]

vilket har lösningen
\[
\begin{bmatrix}
v \\
g
\end{bmatrix}
= \frac{1}{76}
\begin{bmatrix}
98 & 36 \\
36 & 14
\end{bmatrix}
\begin{bmatrix}
101 \\
-233
\end{bmatrix}
= \frac{1}{76}
\begin{bmatrix}
3636 - 3262 \\
374
\end{bmatrix}
= \frac{1}{76}
\begin{bmatrix}
374 \\
374
\end{bmatrix}.
\]

Alltså är minsta kvadratlösningen \(g = 2\frac{374}{76} = \frac{374}{38} = \frac{187}{19}\). (Vi har att \(\frac{187}{19} \approx 9.84\).)
5. Sätt t.ex. \(e_1 = \frac{1}{2}(1, 1, 1, 1) \). Då har \(e_1 \) längden 1. Vektorerna \(e_1 \) och \(u \) är parallella. Vektorn \(u + tv \) är ortogonal mot \(u \) och \(e_1 \) om och endast om \(4 + 2t = 0 \), alltså om och endast om \(t = -2 \). Vi har \(u - 2v = (-1, -3, 5, -1) \). Sätter vi \(e_2 = \frac{1}{2}(-1, -3, 5, -1) \), så är \(e_1, e_2 \) en ontonormerad bas till ifrågavarande underrum.

6. Vi kan t.ex. låta \(e_1 = (0, 0, 1) \) och \(\hat{e}_2 = s\hat{e}_1 \times (1, 1, 1) = s(-1, 1, 0) \), där \(s \) väljs så att \(\hat{e}_2 \) är normerad, t.ex. \(s = \frac{\sqrt{2}}{2} \).

Sedan tar vi \(\hat{e}_3 = \hat{e}_1 \times \hat{e}_2 = \frac{\sqrt{2}}{2}(-1, -1, 0) \).

Antag att \((a, b, c)\) är koordinaterna i den nya basen för vektor \(u = (1, 1, 1) \). Då är \(a = \langle \hat{e}_1 | u \rangle = 1 \), \(b = \langle \hat{e}_2 | u \rangle = 0 \), och \(c = \langle \hat{e}_3 | u \rangle = -\sqrt{2} \).

Överbetygsdel

7. Vektorerna \(u, v \) och \(w \) utgör en positivt orienterad och ontonormerad bas. Vi beräknar att \(w = \frac{1}{2}(2, 1, 2) \).

Vi ser att \(F(v) = w \) och \(F(w) = -v \).

Rita en figur! Vi ser då att \(G(v) = \cos \frac{2\pi}{3}v + \sin \frac{2\pi}{3}w \) och \(G(w) = -\sin \frac{2\pi}{3}v + \cos \frac{2\pi}{3}w \). Beräkning ger därför att

\[
G(v) = \frac{1}{2}v + \frac{\sqrt{3}}{2}w = \left(\frac{1}{3} + \frac{1}{\sqrt{3}}, \frac{1}{3} + \frac{\sqrt{3}}{6}, \frac{1}{6} + \frac{1}{\sqrt{3}} \right),
\]
\[
G(w) = -\frac{\sqrt{3}}{2}v - \frac{1}{2}w = \left(\frac{1}{\sqrt{3}}, \frac{1}{3} - \frac{1}{\sqrt{3}}, -\frac{1}{6} - \frac{\sqrt{3}}{6} \right).
\]

Slutligen är \(\langle (1, 1, 0)|u \rangle = 1 \), \(\langle (1, 1, 0)|v \rangle = 0 \) och \(\langle (1, 1, 0)|w \rangle = 1 \). Därfor är \((1, 1, 0) = u + w \). Det följer att

\[
G(1, 1, 0) = G(u) + G(w) = u - \frac{\sqrt{3}}{2}v - \frac{1}{2}w
\]
\[
= \frac{1}{3}(1, 2, -2) - \frac{\sqrt{3}}{6}(-2, 2, 1) - \frac{1}{6}(2, 1, 2)
\]
\[
= \left(\frac{\sqrt{3}}{3}, \frac{5}{6} - \frac{\sqrt{3}}{3}, -1 - \frac{\sqrt{3}}{6} \right).
\]

8. Vi finner först nollrummet. Den tredje och fjärde raden i \(A \) är linjärkombinationer av de två första raderna. Alltså är radrang 2, varför rangen är 2 och dimensionen av nollrummet är 2. Nollrummet består därför av alla vektorer som är ortogonala mot vektorerna \((0, 1, -1, 1)\) och \((1, -1, 0, -1)\).

En bas för nollrummet ges t.ex. av \(e_1 = (0, -1, 0, 1) \) och \(e_2 = (1, 1, 1, 0) \).

Vi söker nu en ontonormerad bas för nollrummet. Låt \(\hat{e}_1 = \frac{\sqrt{2}}{2}(0, -1, 0, 1) \) och \(u = (1, 1, 1, 0) + c(0, -1, 0, 1) \). Då är \(\hat{e}_1 \) ortogonal mot \(u \) om \(c = \frac{1}{2} \). Med detta värde på \(c \) blir \(u = \frac{1}{2}(2, 1, 2, 1) \). Sätt \(\hat{e}_2 = u/|u| = \frac{\sqrt{10}}{10}(2, 1, 2, 1) \).
Sätt

\[B = \begin{bmatrix} 0 & -\frac{\sqrt{7}}{2} & \frac{\sqrt{7}}{2} \\ \frac{\sqrt{10}}{5} & \frac{\sqrt{10}}{10} & \frac{\sqrt{10}}{10} \end{bmatrix} . \]

Då ges avbildningsmatrisen för \(F \) av

\[B^t B = \frac{1}{5} \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 3 & 1 & -2 \\ 2 & 1 & 2 & 1 \\ 1 & -2 & 1 & 3 \end{bmatrix} . \]

9. Det är klart att \(p \) är ett polynom och att gradtalet är högst \(n - 1 \), ty då determinanten utvecklas kommer varje element i första raden endast multipliceras med element ur de där stående raderna, och variablen \(t \) förekommer endast i första raden.

Enligt definitionen av \(p \) är

\[
p(x_k) = c \begin{vmatrix} 0 & 1 & x_k & x_k^2 & \ldots & x_k^{n-1} \\ y_1 & 1 & x_1 & x_1^2 & \ldots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ y_k & 1 & x_k & x_k^2 & \ldots & x_k^{n-1} \\ y_n & 1 & x_n & x_n^2 & \ldots & x_n^{n-1} \end{vmatrix} = c \begin{vmatrix} 0 & 1 & x_k & x_k^2 & \ldots & x_k^{n-1} \\ y_1 & 1 & x_1 & x_1^2 & \ldots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ y_k & 0 & 0 & 0 & \ldots & 0 \\ y_n & 1 & x_n & x_n^2 & \ldots & x_n^{n-1} \end{vmatrix} .
\]

Utveckling längs rad \(k \) ger att

\[
p(x) = c(-1)^k y_k \begin{vmatrix} 1 & x_k & x_k^2 & \ldots & x_k^{n-1} \\ 1 & x_1 & x_1^2 & \ldots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{k-1} & x_{k-1}^2 & \ldots & x_{k-1}^{n-1} \\ 1 & x_{k+1} & x_{k+1}^2 & \ldots & x_{k+1}^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \ldots & x_n^{n-1} \end{vmatrix} .
\]

Genom att upprepade gånger byta ordning mellan raden med \(x_k \) och den efterföljande, vilket varje gång ger ett teckenbyte, får vi

\[
p(x) = -cy_k \begin{vmatrix} 1 & x_1 & x_1^2 & \ldots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \ldots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \ldots & x_n^{n-1} \end{vmatrix} = y_k,
\]

enligt definitionen av \(c \).

10. Determinanten är oberoende av bas. Vi väljer därför en ortonormal bas \(e_1, \ldots, e_n \) så att \(e_1, \ldots, e_k \) är en bas för \(U \). I denna bas är \(A \) diagonal. De \(k \) första elementen i diagonalen är 2 och de resterande elementen i diagonalen är −1. Alltså är det \(A = (-1)^{n-k}2^k \).